Substorms in Coupled Models:

Expanding Coupling between BATS-R-US and RAM-SCB

D. T. Welling¹ J. Haiducek¹

G. Toth¹ V. K. Jordanova²

¹University of Michigan CLaSP Department

Overview

Goal: Used a coupled, multi-scale, global model to accurately capture substorms

Example "Hit"

Success!

- Southward turning.
- No pressure pulse.
- Good timing agreement with GEO observation

Example "Hi

Success!

- Southward turning.
- No pressure pulse.
- Good timing agreement with GEO observation

Time from 2005-08-31T09:00:00

Example "Almost Hit"

Partial Credit

Huge pressure pulse.

 Weak, transient southward turning.

• Good timing, E poor field peometry.

An Idealized Experiment

Minimal Substorm Model

Rules for simple loading-unloading:

 Solar wind power input at magnetopause P accumulates energy in magnetotail E.

$$\frac{dE}{dt} = P = \varepsilon(v, B)$$

 Unique minimum energy state for magnetosphere F exists for given solar wind state P.

$$F = C - DP$$

 Magnetotail can only move to lower energy state F when energy threshold C is exceeded.

$$E \rightarrow F$$
 when $E \ge C$

- For constant input, substorms occur with constant period of D
 - Expect D = 2.5-3 hr [Borovsky et al., JGR, 1993; Freeman and Farrugia, JGR, 1995; Huang et al., JGR, 2003]

Ideal

Results - Ionosphere

Results - Magnetosphere

Key Questions

Under what conditions can ideal MHD capture substorms?

- System appears to be "leaky".
- Quick timescale IMF change required.
- What about real world conditions?

How can MHD be extended to improve performance during substorms?

- Resistivity: Anomalous, Hall
- Heavy lons: multi species/fluid
- Anisotropic MHD
- MHD with embedded Particle-in-cell (EPIC)

Outflow & Substorms

MHD Only: weak event, terrible timing.

MHD+PWOM:

Stronger event, poor timing.

MHD+GPW:

Excellent comparison.

Outflow & Substorms

MHD Only: weak event, terrible timing.

MHD+PWOM:

Stronger event, poor timing.

MHD+GPW:

Excellent comparison.

Outflow & Substorms

MHD Only: weak event, terrible timing.

MHD+PWOM:

Stronger event, poor timing.

MHD+GPW:

Excellent comparison.

5/4/16

SWMF: GM-IM-IE w/ RAMSCB

Expanded Earth Coupling

Substorm Injections

Ring Current Injections

SEA Time = +10:30

Injections into RAM-SCB

Yu, Y. et al., 2014. The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm. Geophysical Research Letters, 41(4), pp.1126–1132.

Induced E-Field Coupling

Potential Field vs. Velocity

Summary

Ideal MHD can reproduce substorm features

- Quality and reliability still under evaluation.
- Many option to expand MHD and improve MHD performance during substorm events.

Coupling to ring current models allows substorm dynamics to be driven into the inner magnetosphere

- Particle injections, convection field produce qualitatively reasonable results.
- We are expanding coupling to use the whole UxB electric field.